A Collaborative Approach Towards a Regional Research and Technology Center

Connected and Automated Vehicles Summit

October 17, 2019

Civil and Environmental Engineering UNIVERSITY OF WISCONSIN-MADISON

Welcome!

Madison, Wisconsin USA

CV/AV Simultaneous Operation

Autonomous Vehicle

Operates in isolation from other vehicles using internal sensors

Connected Vehicle

Communicates with nearby vehicles and infrastructure

Connected Automated Vehicle

vehicle capabilities

Leverages autonomous and connected

SAE Levels of Vehicle Automation

0

No Automation

Zero autonomy; the driver performs all driving tasks.

Driver Assistance

1

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design.

Partial Automation

2

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

Conditional Automation

3

Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

4 High Automation

The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

5

Full Automation

The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.

Why the rush to AVs?

Smart Cities

• All vehicles SAE Level 5, fully IoT capable, and non-fossil fuel

• All commercial trucking driverless and platooned

Signal-less intersections the norm – vehicles negotiate space-time dynamically

What do you predict??

- It depends on a combination of how we plan it, what people place emphasis on as important, and what the incentives are
- With connected and automated vehicles, this can be a wide spectrum
- How do we get there?
 - Multidisciplinary Private/Public Collaboration
 - Research
 - Testing and Validation
 - Public Engagement
 - Urban, Regional, and Rural Planning
 - Artificial Intelligence
 - Navigating the "messy middle"

TOGETHER!!

Human Factors

https://towardsdatascience.com/deep-learning-for-self-driving-cars-7f198ef4cfa2

Wisconsin Full-Scale Driving Simulator

Left-Turn Traffic Signal Operations

FYA Implementation

NCHRP Report 493: Evaluation of Traffic Signal Displays for Protected/Permissive Left-Turn Control

Source: Brehmer et al. 2003

Implementation Flashing Yellow Arrows

DEPARTMENT OF Civil and

Environmental Engineering

- Impacts from exposure to FYA permissive indication
 - Knodler et. al. 2007a, 2007b, 2009 ٠
 - Noyce et al. 2007 ٠
- FYA and CG indications with and without supplementary signage
 - Brehmer, 2003
 - Schattler et al. 2013, 2015 •
- Red-light running is a leading cause for intersection crashes in the United States
 - FHWA, 2009 •

Source: "Red Light Running Fatalities" FHWA, 2009

Traffic Control

Decision-Making Automation

(source: https://www.shutterstock.com/video/clip-7837867-rush-hour-traffic-midtown-manhattan-night-illuminated)

Research Questions

Automation disengagements

Drivers' take-over performance

Are drivers capable of cooperating with a shared automation system?
Drivers' performance after resume control when using a SAE L3 automaton?
How do different situations affect drivers' reaction time and take-over performance?
How are different automation surprises associated with necessary different lead time?
How does the timing of warnings affect the traffic efficiency as the traffic volume increases ?
Does control transitions have an impact on intersection efficiency/safety?
How do different types of messages affect drivers' permissive left-turn behavior?

Research Gaps and Hypotheses

• SAE Level 3

- Non-driving related tasks
- Take-Over Request design
- Takeover performance

- Urban environments
- Signalized intersections
- Permissive left turns

 Traffic operations and safety at signalized intersections

Take-Over Request Design in Industry

TOR interface when the traffic jam pilot of Audi A8 request drivers to take back control (source: AUDI AG, Image No: A1710305)

The virtual cockpit display of Pilot Assist: (1) Pilot Assist is off when the steering wheel symbol is grey, and (2) Pilot Assist is on when the steering wheel symbol is green (Volvo, 2019).

b

Take-Over Request Design in Academia

"Caution Fog" alert and the takeover request (Walch et al, 2015)

"Heavy rain" alert and the takeover request (Vogelpohl et al, 2018)

Automation available (left) and request-to-intervene (right): (Jarosch et al, 2019)

Please resume control

Takeover-request icon shown on the instrument cluster left: (Erikson and Stanton, 2017); middle: (Naujoks et al., 2018), right (Petermeijer, etal, 2017)

Takeover-request icon design (zeeb et al, 2017)

TOR Design

Please resume control and turn left !

Please resume control and turn left !

Please resume control and turn left !

Please resume control and turn left !

Environmental Engineering INIVERSITY OF WISCONSIN-MADISON

Vehicle to Anything Communications Turning Crosswalk Pedestrian Warning

Source: NYC CV Pilot

Issues Surrounding CV/AV

- Data
- Vehicle Cybersecurity
- Information Privacy
- Vehicle Ethics
- Crashworthiness
- System Disengagements / Driver Re-Engagement
- Complex Driving Situations
- Deep Learning / Artificial Intelligence
- Vehicle Assertiveness
- Technology Will we shape it or let it shape us?

MAASHTO States

MAASHTO States

Automated, Connected, Electrified, and Shared (ACES)

transportation innovation ecosystem

Enabling The Future State of Mobility

We are inspiring, establishing and co-creating the national hub of all things connected and autonomous in Illinois.

NSCNSIN AUTOMATED VEHICLE **PROVING GROUNDS**

Cooperative Research

- **Regional Research and Technology Center**
- Agency University Industry Collaborations

TOGETHER!!

Thank You!

David A. Noyce, PhD, PE, F.ASCE

Arthur F. Hawnn Professor of Transportation Engineering Department of Civil and Environmental Engineering Executive Associate Dean – College of Engineering Director – Traffic Operations and Safety Laboratory Director – Wisconsin Driving Simulation Laboratory

Contact: danoyce@wisc.edu

Civil and Environmental Engineering UNIVERSITY OF WISCONSIN-MADISON