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ABSTRACT 1 
This paper presents a novel monitoring method for car-following control of automated vehicles 2 
that uses real-time measurements of spacing and velocity obtained from vehicle sensors. This study 3 

focuses on monitoring the time gap, a key control parameter that dictates the desired following 4 
spacing of the controlled vehicle. The goal is to monitor deviations in actual time gap from a 5 
desired setting and detect when it deviates beyond some control limits. A random coefficient 6 
modeling method is developed to systematically capture the stochastic distribution of the time gap 7 
and derive a closed-form Bayesian updating scheme to update the distribution in real-time. For 8 

monitoring, a control chart is adopted to systematically set the control limits and inform when time 9 

gap setting should be changed. A simulation experiment demonstrated the effectiveness of the 10 
proposed method for monitoring the time gap and alerting when the parameter setting needs to be 11 
changed.  12 
 13 

Keywords: Automated vehicles, Time gap, Random coefficients, Bayesian updating, Control 14 
chart  15 
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INTRODUCTION 1 
Automated vehicles (AV) have become a technological focus in the pursuit of efficient and safe 2 
transportation. Currently, the technology spans across two major categories: connected automated 3 

vehicles (CAV) and automated vehicles. CAVs are complemented by the ability to communicate 4 
and share information, thus facilitating cooperative control. On the other hand, automated vehicles 5 
make decisions based only on information from their sensors. These technologies are exemplified 6 
in the market through autonomous systems such as Adaptive Cruise Control (ACC) and 7 
Cooperative Adaptive Cruise Control (CACC).     8 

To harvest the full potential of autonomous vehicles technology for improving traffic 9 

stability and capacity, recent field studies have shown the direct implications of car-following 10 
control for traffic improvements [1][2][3]. Specifically, through car-following control, shorter 11 
time gaps between vehicles can be realized while effectively regulating and resolving any 12 
disturbances (i.e. stop-and-go, aggressive deceleration /acceleration). Numerous studies have 13 

developed car-following control algorithms, which can be generally categorized into: (i) 14 
linear/non-linear controller that employs feedback and feedforward control to follow a desired 15 

spacing [4][5]; (ii) optimal control that facilitates online optimization of a pre-designed objective 16 
function over a future time horizon, incorporating current system measurements and dynamics 17 
(e.g., Model Predictive Control (MPC)) [6][7][8]; and (iii) Artificial Intelligence (AI) type 18 

controller that adopts data-driven, machine learning algorithms [9].   19 
Perhaps the most extensively adopted controller in both ACC and CACC is the linear 20 

feedback-feedforward controller, which enjoys high flexibility and simplicity in formulating the 21 
control strategy and incorporating uncertainty. Notably, the linear controller takes on a hierarchical 22 
form where an upper controller dictates the car-following policy that is then fed into the lower 23 
controller to prescribe the acceleration rate needed. The policy for the upper controller is either 24 

constant time headway (CTH) or constant spacing (CS) policy. CTH defines the equilibrium 25 
spacing as a linear relationship between spacing and velocity [10] while the CS policy dictates a 26 

constant time-invariant spacing [11]. Of the two, CTH is gaining more acceptance because it brings 27 
more robustness towards disturbance propagation and is consistent with the normal driving 28 
intuition (e.g., a driver is likely to slow down when the spacing decreases.) [12]. The Society of 29 

Automotive Engineers (SAE) now recommends the CTH policy as a common standard in the 30 
current ACC/CACC systems with linear controllers.  31 

The basic idea behind the CTH policy is to regulate the vehicle’s longitudinal movement 32 

(acceleration/deceleration rate) to maintain a desired spacing. Specifically, the desired spacing 33 
equals the multiplication of speed by a pre-defined constant time gap plus a standstill spacing. 34 

Thus, a key factor in this formulation is the time gap parameter, which dictates the desired spacing 35 
at every instance. For instance, in an optimal setting we expect the controlled vehicle to maintain 36 
perfectly the desired spacing at all times. [1] expressed that time gap profile plots give an insight 37 

on the car-following behavior, suggesting that high gap errors and fluctuations result in a poor 38 

tracking of the time gap setting, thus leading to undesired control outputs [13].Additionally, the 39 

value of time gap parameter has been under the spotlight in current literature where [14] suggests 40 
that a lower time gap is always desirable, especially for CAV’s as it guarantees a reduction in the 41 
effect of disturbances.  42 

In a series of field studies performed on ACC & CACC systems by the California PATH 43 
program, variations in the actual time gap profile were noted as compared to the time gap setting 44 

[15]. Specifically, when the leading vehicle is undergoing repeated braking and acceleration, the 45 

ACC system experienced significant gap errors. In cases of car platooning, the actual time gap 46 
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profile shows overshooting, which could result in driver discomfort and may lead to string 1 
instability. In contrast, CACC systems performed significantly better under disturbances due to its 2 
communication ability, yet variations in time gap are still present, possibly due to uncertainties in 3 

system dynamics and sensor measurements (e.g. air drag, communication delay, measurement 4 
noise, etc.) [8]. While researchers have studied and incorporated these uncertainties in formulating 5 
the control system, uncertainties specific to the time gap parameter remain unaddressed.  6 

Based on the above insights, this paper proposes a novel direction in assessing the 7 
performance of the control system, which stresses the importance of coupling the vehicle control 8 

system with a monitoring system able to reason about its condition in real-time. Specifically, the 9 

goal of this paper is to develop a monitoring framework to examine the variations in time gap 10 
parameter informed from real-time sensor data. To do this, we introduce a random coefficient 11 
formulation of the physical car-following model with a Bayesian updating approach. Such 12 
formulation enjoys high flexibility and analytical properties that allow one to capture the 13 

stochasticity in time gap parameter. We also introduce control charts to determine the feasible 14 
region for time gap variations. Thus, the proposed monitoring system can inform when the time 15 

gap should be changed to attain more stable performance.  16 
 17 

FORMULATION 18 

In this section we present the formulation for monitoring the time-gap parameter and derive closed 19 
formulas for the Bayesian updating method informed by real-time sensor data. Furthermore, we 20 

present the formulation of Shewhart-univariate control charts.  21 
 22 

Background 23 
The upper level controller illustrated in Figure 1 commands the car-following behavior of the 24 

automated vehicle by regulating the spacing between the leading and following vehicles. This 25 
spacing is based on the CTH policy, which shadows Newell’s car following model in relating the 26 

spacing linearly with the speed of the car (see Figure 2 for illustration). Such formulation depicts 27 
the natural driving behavior, where cars slow down when the spacing decreases. Accordingly, a 28 
key element of controlling the longitudinal movement of an AV is assigning a spacing that the 29 

vehicle should follow.  30 
Thus, using the CTH policy, the desired spacing distance is calculated as follows:  31 

 32 

𝑠𝑖
𝑑(𝑡) = 𝑣𝑖(𝑡) × 𝜏∗ + 𝑠0                                                                                                                (1) 33 

∆𝑠𝑖(𝑡) =  𝑠𝑖(𝑡) − 𝑠𝑖
𝑑(𝑡)                                                                                                                 (2) 34 

 35 

where 𝑠𝑖
𝑑(𝑡) is the desired spacing of vehicle i at time t; 𝑣𝑖(𝑡) is the speed of vehicle i at time t; 𝜏∗ 36 

is a pre-defined constant time gap; and 𝑠0 is the standstill spacing of vehicle i. ∆𝑠𝑖(𝑡) is the 37 

deviation from the desired spacing of vehicle i at time t, and 𝑠𝑖(𝑡) is the actual spacing of vehicle 38 

i at time t.   39 

 40 
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 1 
Figure 1 Illustration for information topology of upper level controller 2 

 3 
Consequently, the vehicle controller is set to regulate the acceleration rate at every time 𝑡 4 

to realize a minimum deviation from the desired spacing. In optimal conditions, where the vehicle 5 

can perfectly follow the desired spacing, we expect the actual time gap between consecutive 6 

vehicles to be equal to the pre-defined time gap, 𝜏∗. While this is a desired situation, factors such 7 

as environmental noise, communication delays and measurement errors will lead to variations 8 
between the actual time gap and the pre-defined time gap setting. Variations in time gap could be 9 
stemming from these uncertainties, yet communication delays and measurement errors are 10 

exogenous, in contrast those related to time gap are endogenous. Previous studies have 11 
incorporated exogenous uncertainties in the formulation of lower level controller [16] [7], yet 12 
explicit uncertainties in time gap variations have not been studied. Notably, decreasing the 13 
variations in time gap is specifically important in the current ACC/CACC control system, as large 14 
variations may lead to driver discomfort, loss of stability (e.g., time gap overshooting along the 15 
platoon) and performance hinderance.  16 

 17 

 18 
Figure 2 Relationship between spacing and velocity 19 
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Model Development 1 
In this section, we model the spacing between the leading and following vehicles as a random 2 
effects model. Specifically, the proposed model follows a parametric approach with random 3 

coefficients. This is particularly suitable for our aim to describe the variations in the time-gap 4 
parameter while preserving the functional form of the CTH. The random coefficients also allow 5 
for describing the vehicle specific variations as well as variations within a platoon of vehicles.  6 
 Then, without loss of generality, we build upon the functional form of CTH explained 7 
above to represent the spacing as follows: 8 

 9 

 𝑖(𝑡) =  𝒱𝑇(𝑡) × Γ𝑖 + 𝜀𝑖(𝑡)                                                                                                           (3) 10 

 11 

where  𝑖(𝑡) is the spacing between vehicle 𝑖 and 𝑖 − 1; 𝒱𝑇(𝑡) contains the intercept and the speed 12 

measurements; Γ𝑖 is a vector of random coefficients; and 𝜀𝑖(𝑡) is an error term introduced to capture 13 

measurement errors, environmental noise, etc. The error term is assumed to be independent and 14 

follows a normal distribution 𝑁(0 𝜎2). As for the random coefficients Γ𝑖 we assume it follows a 15 

multi-variate normal distribution 𝑁(𝜇𝑏 Σ𝑏). Previous studies have shown that the model 16 

performance is generally robust against misspecifications in the distribution of these random 17 

variables [17][18]. By expressing 𝒱𝑇(𝑡) = [1  𝑖(𝑡)] and Γ𝑖 = [𝑠0 𝜏𝑖]
𝑇, where  𝑖(𝑡) represents the 18 

speed measurements of vehicle 𝑖; 𝑠0 is the standstill spacing; and 𝜏𝑖 is the time-gap. The spacing 19 

formulation will lead to the following form  20 

 21 

 𝑖(𝑡) =  𝒱𝑇(𝑡) × Γ𝑖 + 𝜀𝑖(𝑡) = 𝑠0 + 𝜏𝑖 𝑖(𝑡) + 𝜀𝑖(𝑡)                                                                                        (4) 22 

 23 
Specifically, by allowing Γ𝑖 to be random we can explicitly account for variations in the time-gap 24 

parameter, thereby enabling real-time monitoring. An illustration of the time gap as a random 25 
coefficient is shown in Figure 3.  26 

 27 

 28 
Figure 3 Illustration of random time gap coefficient 29 
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Time Gap Distribution Updating using Bayesian Statistics 1 
The variations in the time-gap parameter are attributed to the performance of the vehicle controller 2 
in real-time where the vehicle is subject to frequent disturbances and system uncertainty. Thus, to 3 

monitor these variations it is essential to estimate the parameter informed from real-time data. For 4 
this, we use a Bayesian updating scheme where both prior knowledge and real time vehicle-5 
specific information are fused together for estimation. Typically, Bayesian updating is a two-stage 6 
process: offline and online. In the offline stage, a prior knowledge of the parameter is specified 7 
either based on historical data or expert knowledge. In our case, we choose the desired time gap 8 

as the prior knowledge since the actual time gap is expected to be equal to the desired time gap. In 9 

the online stage, we draw on the advantage of real-time data gathered by vehicle sensors (e.g., 10 
LIDAR) to update the estimates of the random coefficients in the model developed above. Details 11 
follow. 12 
 We assume that by instance 𝑡∗, 𝑛 measurements of the spacing and speed of vehicle 𝑎 are 13 

gathered from on-board vehicle sensors, denoted respectively as  𝑎
∗ =14 

{ 𝑎1  𝑎2  𝑎3  𝑎4  𝑎4 … 𝑎𝑛}𝑇 = { 𝑎(𝑡1)  𝑎(𝑡2) …  𝑎(𝑡𝑛)}𝑇 and  𝑎
∗ =15 

{ 𝑎1  𝑎2  𝑎3  𝑎4  𝑎4 … 𝑎𝑛}, where 𝑡𝑛 ≤ 𝑡∗. Setting the observed data in equation (4) we get;  16 

(here the asterisk denotes that values are dependent on observed values) 17 
 18 
𝑺𝒂

∗ = 𝒁𝒂
∗ × 𝜞𝒂 + 𝓔𝒂

∗                                                                                                                                          (5) 19 

where 𝓔𝒂
∗ = {𝜀𝑎(𝑡1) 𝜀𝑎(𝑡2) …  𝜀𝑎(𝑡2)}  and 𝒁𝒂

∗ = [
𝒱𝑎

𝑇(𝑡1)
⋯

𝒱𝑎
𝑇(𝑡𝑛)

] 20 

 21 

Thus, we use the prior information of 𝛤𝑖 ~ 𝑁(𝜇𝑏  Σ𝑏), where 𝜇𝑏 = [ 𝜇𝑠0  𝜇𝜏]
𝑇  is a 2 × 1 matrix 22 

with 𝜇𝑠0 and 𝜇𝜏 representing the mean values of the standstill spacing (𝑠0) and actual time gap (𝜏), 23 

respectively, and Σ𝑏  is a 2 × 2 covariance matrix associated with 𝑠0 and 𝜏, to compute the posterior 24 

distribution 𝛤𝑎 according to the Bayes theorem. 25 

 26 
𝑝(Γ𝑎| 𝑎

∗) ∝ 𝑝( 𝑎
∗|Γ𝑎)𝜋(Γ𝑖)                                                                                                                              (6) 27 

 28 
where 𝜋(Γ𝑖) = 𝑁(𝜇𝑏 Σ𝑏) represents the prior distribution of Γ𝑎. Consequently, we represent the 29 

likelihood function of 𝑝( 𝑎
∗|Γ𝑎) as: 30 

 31 

𝑝( 𝑎
∗|Γ𝑎) =  ∏ 𝑝[𝑛

𝑗=1  𝑎𝑗|Γ𝑎] =  ∏
1

√2𝜋𝜎2
× exp {

−1

2

[𝑆𝑎𝑗−𝒱𝑎
𝑇(𝑡𝑗)Γ𝑎]2

𝜎2 }𝑚
𝑗=1                                                     (7) 32 

 33 
Proposition: The posterior distribution 𝑝(Γ𝑎| 𝑎

∗) is a multivariate normal distribution: i.e., 34 

𝑝(Γ𝑎| 𝑎
∗) = 𝑁(𝜇𝑎

∗  Σ𝑎
∗ ), where: 35 

 36 

{
𝝁𝒂

∗ = 𝚺𝒂
∗[

(𝒁𝒂
∗ )𝑻𝑺𝒂

∗

𝝈𝟐 + (𝚺𝒃) 
−𝟏𝝁𝐛]

𝚺𝒂
∗ =  [(𝚺𝐛)

−𝟏 +
(𝒁𝒂

∗ )𝑻𝒁𝒂
∗

𝝈𝟐 ]
−𝟏                                                                                                                     (8) 37 

 38 

 39 
 40 
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Proof: The likelihood function in Eq. (7) can be written as  1 
 2 

𝑝( 𝑎
∗|Γ𝑎) = (2𝜋𝜎2)−𝑛/2 × exp [−( 𝑎

∗ − 𝑍𝑎
∗ × Γ𝑎)

𝑇( 𝑎
∗ − 𝑍𝑎

∗ × Γ𝑎)/(2𝜎2)]                                        (9) 3 

 4 

Based on the prior distribution 𝜋(Γ𝑖) = 𝑁(𝜇b  Σ𝑏), the posterior distribution of Γ𝑎 can then be 5 

formulated as:               6 
𝑝(Γ𝑎| 𝑎

∗) ∝ 𝑝( 𝑎
∗|Γ𝑎)𝜋(Γ𝑖)  7 

∝ exp {
−1

2𝜎2
( 𝑎

∗ − 𝑍𝑎
∗𝛤𝑎)

𝑇( 𝑎
∗ − 𝑍𝑎

∗𝛤𝑎)} × exp {
−1

2
[(Γ𝑎 − 𝜇b)

𝑇Σ𝑏
−1(Γ𝑎 − 𝜇b)]}  8 

∝ exp {
−1

2𝜎2
[( 𝑎

∗)𝑇 𝑎
∗ − Γ𝑎

𝑇(𝑍𝑎
∗)𝑇 𝑎

∗ − ( 𝑎
∗)𝑇𝑍𝑎

∗𝛤𝑎 + Γ𝑎
𝑇(𝑍𝑎

∗)𝑇𝑍𝑎
∗𝛤𝑎]}9 

× 𝑒𝑥𝑝 {
−1

2
[Γ𝑎

𝑇Σ𝑏
−1𝛤𝑎 − 𝜇b

𝑇Σ𝑏
−1𝛤𝑎 − Γ𝑎

𝑇Σ𝑏
−1𝜇b + 𝜇b

𝑇Σ𝑏
−1𝜇b]}  10 

∝ 𝑒𝑥𝑝 {
−1

2
[Γ𝑎

𝑇 (
(𝑍𝑎

∗)𝑇𝑍𝑎
∗

𝜎2
+ Σ𝑏

−1) × 𝛤𝑎 − Γ𝑎
𝑇 (

(𝑍𝑎
∗)𝑇 𝑎

∗

𝜎2
+ Σ𝑏

−1𝜇b)11 

− (
 𝑎

∗(𝑍𝑎
∗)𝑇

𝜎2
+ 𝜇b

𝑇Σ𝑏
−1)𝛤𝑎 + 𝒰1]}  12 

∝ 𝑒𝑥𝑝 {
−1

2
 [ Ψ𝑇 (

(𝑍𝑎
∗)𝑇𝑍𝑎

∗

𝜎2
+ Σ𝑏

−1)Ψ + 𝒰2]} 13 

 14 
                                             (10) 15 

Here 𝒰1 and 𝒰2 are constants, and Ψ is a vector defined as 16 

 17 

Ψ = Γ𝑝 − (
(𝑍𝑎

∗)𝑇𝑍𝑎
∗

𝜎2 + Σ𝑏
−1)

−1

(
(𝑍𝑎

∗)𝑇𝑆𝑎
∗

𝜎2 + Σ𝑏
−1𝜇b)                                                                                         (11)                                            18 

 19 

With this, we can define 20 
 21 

{
𝜇𝑎

∗ = (
(𝑍𝑎

∗)𝑇𝑍𝑎
∗

𝜎2 + Σ𝑏
−1)

−1

(
(𝑍𝑎

∗)𝑇𝑆𝑎
∗

𝜎2 + Σ𝑏
−1𝜇b)

Σ𝑎
∗ =  (

(𝑍𝑎
∗)𝑇𝑍𝑎

∗

𝜎2 + Σ𝑏
−1)

−1                                                                                                  (12) 22 

 23 
Thus, the result can be rewritten as 24 
 25 

𝑝(Γ𝑎| 𝑎
∗) ∝  {

−1

2
[(Γ𝑎 − 𝜇𝑎

∗ )𝑇(Σ𝑎
∗)−1(Γ𝑝 − 𝜇𝑎

∗)]}                                                                        (13) 26 

 27 
This probability density function is then a multivariate normal distribution 𝑁(𝜇𝑎

∗  Σ𝑎
∗ ).  28 

The formulation derived above in Eq. (13) presents a closed form Bayesian updating 29 

scheme, which reduces drastically the computational load thanks to the desired analytical 30 
advantage. This allows our monitoring system to be used on-board the autonomous vehicle.  31 
 32 

Monitoring through Control Charts 33 

In this section, we combine the Bayesian updating scheme with Shewhart univariate control charts 34 

to monitor the variations in the time gap parameter in real time. This monitoring methodology is 35 
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particularly beneficial in the ACC/CACC systems, where the user would have the preference in 1 
choosing a desired time gap setting ([15] presents some of these time gap settings and how driver 2 
can select their desired value). Specifically, if large variations in the time gap are observed due to 3 

an undesirable event (e.g., following a human-driven vehicle experiencing a speed disturbance), 4 
our monitoring methodology can suggest a change in the time gap setting to stabilize the variations.  5 
 In our framework, an undesirable situation that manifests itself as a significant change in 6 
the time gap distribution is detected systematically by the Shewhart-control chart. In this method, 7 
a baseline distribution of the time gap parameter is designed, and then a distance metric is used to 8 

measure the deviation from the baseline distribution [17]. We design the baseline distribution 9 

according to some preferred values for the parameter setting. For instance, the baseline distribution 10 
of time gap would be a normal distribution, 𝑁 (𝜇𝑑𝑒𝑠𝑖𝑟𝑒𝑑  𝜎𝑑𝑒𝑠𝑖𝑟𝑒𝑑), where 𝜇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝜏∗ (time gap 11 

setting) and 𝜎𝑑𝑒𝑠𝑖𝑟𝑒𝑑  is the acceptable variation in time gap. Accordingly, lower and upper bounds 12 

are computed to define the acceptable domain of variation:  13 
 14 
𝐿𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐿𝑖𝑚𝑖𝑡 (𝐿𝐶𝐿) =  𝜇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − ℒ ∗ 𝜎𝑑𝑒𝑠𝑖𝑟𝑒𝑑                                                                              (14) 15 

𝐶𝑒𝑛𝑡𝑒𝑟 𝐿𝑖𝑛𝑒 (𝐶𝐿) =  𝜇𝑑𝑒𝑠𝑖𝑟𝑒𝑑                                                                                                                      (15) 16 

𝑈𝑝𝑝𝑒𝑟 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐿𝑖𝑚𝑖𝑡 (𝑈𝐶𝐿) =  𝜇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 + ℒ ∗ 𝜎𝑑𝑒𝑠𝑖𝑟𝑒𝑑                                                                           (16) 17 

 18 
Here ℒ is a multiplicative value representing the desired confidence level (i.e. within 𝜎, 2𝜎 or 3𝜎). 19 

This allows us to compare the updated time gap estimated through the Bayesian framework with 20 

the control limits to detect when the time gap goes out of these bounds, triggering a change in the 21 

time gap setting. 22 
 23 
APPLICATION ANALYIS 24 
In this section, we demonstrate the application of our monitoring methodology through a 25 
simulation experiment, incorporating the real vehicle trajectory data (NGSIM data). Specifically, 26 

our designed scenario involves a leading human-driven vehicle followed by a platoon of five 27 
CAVs. We monitor the variation of time gap over time for the five CAVs and detect any 28 
undesirable events. 29 
 30 
Scenario Design 31 

Our aim is to study the variations in time gap when an autonomous vehicle (could be with or 32 

without communication abilities) is following a human-driven vehicle undergoing aggressive 33 
cycles of acceleration/deceleration in the speed range of 20𝑚𝑝ℎ –  80𝑚𝑝ℎ. To do so, we extract 34 

the acceleration profile of vehicle 1829 from NGSIM dataset for I-80 [19] and create a vehicle 35 
trajectory for the desired velocity range. The simulated trajectory was created by assuming an 36 

initial velocity and location, then using the acceleration profile to construct the trajectory path. 37 
This was specifically done in order to study how the monitoring method developed in this paper 38 

would perform when the controlled vehicle is subjected to vast disturbances. The variations present 39 
in the acceleration/deceleration profile will help mimic uncertainty that could arise in real 40 
conditions due to endogenous factors, exogenous factors and uncertain driving behavior. The full 41 

scenario design is illustrated in Figure 4.  42 
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 1 
Figure 4 Scenario Design: (a) velocity profile; (b) acceleration profile; (c) trajectory 2 

 3 
Controller Used 4 

The controller used here is the linear controller developed by Zhou and Ahn [20]. Here we briefly 5 
summarize the controller, and readers are referred to the citated paper for more details. The 6 
controller’s upper level follows the CTH policy to compute the desired spacing as in Eq. (1), and 7 
the lower level controller incorporates the generalized vehicle dynamics (GLVD): 8 

 9 

�̇�𝑖(𝑡) =  
−1

𝑇𝑖 𝑙
𝑎𝑖(𝑡) +

𝐾𝑖 𝑙

𝑇𝑖 𝑙
𝑢𝑖(𝑡)                                                                                                          (17) 10 

 11 
where �̇�𝑖(𝑡) is the jerk; 𝑎𝑖(𝑡) is the actual acceleration rate realized for vehicle i; 𝑢𝑖(𝑡) is the 12 

acceleration rate commanded by the upper level controller;  𝐾𝑖   is the ratio of the commanded 13 

acceleration to the realized acceleration for vehicle i; and 𝑇𝑖   is the actuation time lag. Accordingly, 14 

the system can be formulated as a state-space following the model:  15 
 16 

𝑥�̇�(𝑡) = 𝐴𝑖𝑥𝑖(𝑡) + 𝐵𝑖𝑢𝑖(𝑡) + 𝐷𝑎𝑖−1(𝑡)                                                                                                       (18) 17 

 18 

where 𝑥𝑖(𝑡) =  [

∆𝑑𝑖(𝑡)
∆𝑣𝑖(𝑡)
𝑎𝑖(𝑡)

], ∆𝑑𝑖(𝑡) is the deviation from desired spacing, ∆𝑣𝑖(𝑡) is speed difference 19 

between vehicle 𝑖 and 𝑖 − 1, 𝐴𝑖 = [

0 1 𝜏∗

0
0

0
0

−1
−1

𝑇𝑖 𝑙

], 𝐵𝑖 =  [

0
0

𝐾𝑖 𝑙

𝑇𝑖 𝑙

], and 𝐷 =  [
0
1
0
].  20 

where 21 
 22 
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 𝑢𝑖(𝑡) = 𝑘𝑖𝑥𝑖(𝑡) + 𝑘𝑓𝑖𝑎𝑖−1(𝑡 − 𝜃)                                                                                                (19) 1 

 2 

Here 𝑘𝑖  is a vector containing feedback gains; 𝑘𝑓𝑖  is a coefficient for feedforward; 𝜃 is a variable 3 

for communication delay.  4 
The parameter values used in the simulation experiment are shown in Table 1. We chose 5 

the desired time gap of 1.6 seconds as it is one of the available setting options in the current 6 
ACC/CACC systems. Based on this parameter setting, we simulate CAV trajectories using this 7 
controller.   8 
 9 

Table 1 Simulation Parameter Values (Adopted from [20]) 10 

 11 

Parameter Value 

𝑇𝑖   0.45 

𝐾𝑖   1 

𝜏∗ 1.6 sec 

Run time 250 sec 

Time step  0.1 sec 

 12 

Monitoring Profiles and Control Charts 13 
Our monitoring methodology is then coded into an algorithm allowing to profile the time gap of 14 
every vehicle over time. Also, we determine the acceptable domain of variations through the 15 

Shewhart control charts. We compute the control limits based on a 95% confidence level (i.e., 16 
2𝜎). We assume that our baseline time gap distribution is 𝑁(1.6  0.125). This means that we 17 

expect our actual time gap to be 1.6 while accepting a standard deviation of 0.125. Then, we can 18 

compute the control limits as: 19 

𝐿𝐶𝐿 = 𝜇 − 2 ∗ 𝜎 = 1.6 − 2 ∗ 0.125 = 1.35                                                                              (20) 20 

𝐶𝐿 =  𝜇 = 1.6                                                                                                                             (21) 21 

𝑈𝐶𝐿 =  𝜇 + 2 ∗ 𝜎 = 1.6 + 2 ∗ 0.125 = 1.85                                                                            (22) 22 

Without loss of generality, we assume 𝜀 ~ 𝑁(0 0.01) and the prior distribution of random 23 

coefficients in Bayesian updating as Γ𝑖 ~ 𝑁(𝜇𝑏 Σ𝑏), where 24 

{
𝜇𝑏 = [1 1.6]𝑇

Σ𝑏 = [
0.0001 −1𝑒 − 5
−1𝑒 − 5 0.125

]
}                                                                                                     (23) 25 

Figure 5 presents the time gap profiles of the vehicles over time along with the control limits 26 
(red lines). The analysis shows that the variations exceed the limits for vehicles 1 and 2, where 27 
the max time gap reaches 1.92 seconds and minimum of 1.28 seconds. Furthermore, the time gap 28 
profile shows significant variations within a short time (going out of the bounds four times 29 

within 50 seconds), suggesting undesirable performance. Vehicles 3, 4, and 5 show a decrease in 30 

variations, which is expected as the controller is designed to dampen disturbances along the 31 
platoon to ensure string stability.  32 
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 1 

 2 

Figure 5 Time gap profiles and control limits for vehicles 1 to 5 3 

 4 

A significant advantage by our real-time monitoring methodology is to support real-time 5 

parameter adjustment to improve performance. For instance, once we detect large variations in 6 
the time gap, we can change the time gap setting to realize lower variations. For our example, 7 
after we detect that the time gap of vehicle 1 exceeded the control limits three times within 35 8 

seconds, we change the desired time gap from 1.6 seconds to 1 second. This decrease in the time 9 
gap helps in dampening the disturbances more effectively. Now, we change our control limits to:  10 

𝐿𝐶𝐿𝑛𝑒𝑤 = 𝜇𝑛𝑒𝑤 − 2 ∗ 𝜎 = 1 − 2 ∗ 0.125 = 0.75                                                                     (24) 11 

𝐶𝐿𝑛𝑒𝑤 = 𝜇𝑛𝑒𝑤 = 1                                                                                                                     (25) 12 

𝑈𝐶𝐿𝑛𝑒𝑤 = 𝜇𝑛𝑒𝑤 + 2 ∗ 𝜎 = 1 + 2 ∗ 0.125 = 1.25                                                                    (26) 13 

Figure 6 demonstrates that the change in the time gap setting leads to drastically lower 14 

variations in time gap for vehicle 1: where the maximum deviation from the desired time gap 15 
reduces to 0.17 from 0.32 when the time gap was set at 1.6 seconds. Figure 7 shows the profile 16 
of the entire platoon before and after the change. An interesting observation is that for vehicles 3, 17 
4 & 5 the variations under both time gaps are small. Thus, it is viable to only change the time gap 18 

setting for vehicles experiencing large variations.  19 

 20 
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 1 

Figure 6 Vehicle 1 time gap profile before and after change 2 

a)  = 𝟏.  

b)  = 𝟏
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 1 

Figure 7 Vehicles 1-5 time gap profile before and after change 2 

 3 

CONCLUSIONS 4 

This study presented a novel real-time monitoring methodology for time gap variations informed 5 
from vehicle sensor data on spacing and speed. The main contributions of this study are: (1) 6 
motivating the importance of monitoring time gap variations as a key performance metric for 7 
vehicle’s control system; (2) developing a formulation of the spacing between vehicles that 8 
addresses the stochastic nature of time gap parameter through incorporating random coefficients; 9 

(3) providing derivation and proof of a closed-form Bayesian updating scheme that reduces the 10 

computational load and enables real-time implementation; (4) incorporating control charts in the 11 
monitoring scheme to alert when a change in time gap is desired.  12 

a)  = 𝟏.  

a)  = 𝟏
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Furthermore, the study showcased application of the monitoring methodology through 1 
simulations utilizing the NGSIM data. We monitor the time gap profile of a platoon of CAVs 2 
following a human driven vehicle undergoing cycles of aggressive deceleration and acceleration, 3 

and the results showed that the variation in time gap exceeded the desired limits. When the time 4 
gap setting was changed as informed by our monitoring system, the variation decreased 5 
significantly, demonstrating the effectiveness of the proposed monitoring system.   6 

Nevertheless, this study can be enhanced in several ways. Real experimental data on 7 
autonomous vehicles can be used to systematically analyze the uncertainty in time gap.  A non–8 

linear modeling approach can also be considered to obtain more accurate estimates of time gap in 9 

real-time. Furthermore, the time gap parameter depends on key control parameters such as 10 
feedback and feedforward gains, which are not considered in this work. Finally, incorporation of 11 
other performance metrics will result in a better monitoring methodology.  12 

 13 

 14 
ACKNOWLEDGMENTS 15 

This research was sponsored by the United States National Science Foundation through Award 16 
CMMI 1536599 and the University of Wisconsin Madison 17 

 18 

 19 
AUTHOR CONTRIBUTION ATATEMENT 20 

The authors confirm contribution to the paper as follows: study conception and design: Kontar 21 
(lead) and Ahn; data collection: N/A; analysis and interpretation of results: Kontar (lead) and 22 
Ahn; draft manuscript preparation: Kontar (lead) and Ahn. All authors reviewed the results and 23 
approved the final version of the manuscript.  24 



REFERENCES 

 

[1] V. Milanes, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura, 

“Cooperative adaptive cruise control in real traffic situations,” IEEE Trans. Intell. Transp. 

Syst., vol. 15, no. 1, pp. 296–305, 2014. 

[2] S. E. Shladover, D. Su, and X.-Y. Lu, “Impacts of Cooperative Adaptive Cruise Control 

on Freeway Traffic Flow,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2324, no. 1, pp. 

63–70, 2013. 

[3] J. Pérez, V. Milanés, J. Godoy, J. Villagrá, and E. Onieva, “Cooperative controllers for 

highways based on human experience,” Expert Syst. Appl., vol. 40, no. 4, pp. 1024–1033, 

2013. 

[4] D. Swaroop, J. K. Hedrick, C. C. Chien, and P. Ioannou, “A Comparision of Spacing and 

Headway Control Laws for Automatically Controlled Vehicles,” Veh. Syst. Dyn., vol. 23, 

no. 1, pp. 597–625, 1994. 

[5] D. Swaroop, “String Stability of Interconnected Systems - Automatic Control, IEEE 

Transactions on,” IEEE Trans. Automat. Contr., vol. 41, no. 3, pp. 349–357, 1996. 

[6] M. Wang, W. Daamen, S. P. Hoogendoorn, and B. van Arem, “Rolling horizon control 

framework for driver assistance systems. Part I: Mathematical formulation and non-

cooperative systems,” Transp. Res. Part C Emerg. Technol., vol. 40, pp. 271–289, 2014. 

[7] M. Wang, W. Daamen, S. P. Hoogendoorn, and B. van Arem, “Rolling horizon control 

framework for driver assistance systems. Part II: Cooperative sensing and cooperative 

control,” Transp. Res. Part C Emerg. Technol., vol. 40, pp. 290–311, 2014. 

[8] Y. Zhou, S. Ahn, M. Chitturi, and D. A. Noyce, “Rolling horizon stochastic optimal 

control strategy for ACC and CACC under uncertainty,” Transp. Res. Part C Emerg. 

Technol., vol. 83, pp. 61–76, 2017. 

[9] L. Zhang and G. Orosz, “Consensus and disturbance attenuation in multi-agent chains 

with nonlinear control and time delays,” Int. J. Robust Nonlinear Control, vol. 27, no. 5, 

pp. 781–803, 2017. 

[10] R. Rajamani and S. E. Shladover, “Experimental comparative study of autonomous and 

co-operative vehicle-follower control systems,” Transp. Res. Part C Emerg. Technol., vol. 

9, no. 1, pp. 15–31, 2001. 

[11] D. Swaroop and K. R. Rajagopal, “Intelligent cruise control systems and traffic flow 

behavior,” Am. Soc. Mech. Eng. Dyn. Syst. Control Div. DSC, vol. 67, pp. 373–380, 1999. 

[12] P. Y. Li and A. Shrivastava, “Traffic flow stability induced by constant time headway 

policy for adaptive cruise control vehicles,” Transp. Res. Part C Emerg. Technol., vol. 10, 

no. 4, pp. 275–301, 2002. 

[13] V. Milanés and S. E. Shladover, “Modeling cooperative and autonomous adaptive cruise 

control dynamic responses using experimental data,” Transp. Res. Part C Emerg. 

Technol., vol. 48, pp. 285–300, 2014. 

[14] Y. Bian, Y. Zheng, W. Ren, S. E. Li, J. Wang, and K. Li, “Reducing time headway for 

platooning of connected vehicles via V2V communication,” Transp. Res. Part C Emerg. 

Technol., vol. 102, no. August 2018, pp. 87–105, 2019. 

[15] S. Shladover et al., “Effects of Cooperative Adaptive Cruise Control on Traffic Flow: 

Testing Drivers’ Choices of Following Distances,” Neuropsychologia, vol. 32, no. 4, pp. 

1794–1803, 2009. 

[16] M. Wang, S. P. Hoogendoorn, W. Daamen, B. van Arem, B. Shyrokau, and R. Happee, 



W. Kontar, S. Ahn  

17 
 

“Delay-compensating strategy to enhance string stability of adaptive cruise controlled 

vehicles,” Transp. B, vol. 6, no. 3, pp. 211–229, 2018. 

[17] F. Hsieh, Y. K. Tseng, and J. L. Wang, “Joint modeling of survival and longitudinal data: 

Likelihood approach revisited,” Biometrics, vol. 62, no. 4, pp. 1037–1043, 2006. 

[18] A. Elwany and N. Gebraeel, “Real-Time Estimation of Mean Remaining Life Using 

Sensor-Based Degradation Models,” J. Manuf. Sci. Eng., vol. 131, no. 5, p. 051005, 2009. 

[19] US Department of Transportation - FHWA , (2008). Interstate 80 Freeway Dataset.  

 

[20] Y. Zhou and S. Ahn, “Robust local and string stability for a decentralized car following 

control strategy for connected automated vehicles,” Transp. Res. Part B Methodol., vol. 

125, pp. 175–196, 2019. 

 


