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ABSTRACT  26 

Roadway safety management consists of network screening, diagnosis, countermeasure selection, 27 

economic appraisal, prioritization, and safety effectiveness. Applications of the safety management process 28 

is limited in small municipalities due to data, statistical expertise, and resources required. This paper 29 

addresses the challenges faced by small jurisdictions and implementation of the safety management process 30 

for Madison metropolitan area in Wisconsin. Jurisdiction specific crash prediction models were developed 31 

by intersection type using data from over 4,000 intersections. Performance measures included the 32 

Equivalent Property Damage Only (EPDO) average crash frequency with Empirical Bayes adjustments and 33 

the Level of Service of Safety (LOSS). Wisconsin Crash Outcome Data Evaluation System (CODES) data 34 

was used to estimate local crash costs by severity and type. Sites were provisionally ranked in network 35 

screening, and diagnosis was conducted based on intersection observed crash types and distributions. 36 

Treatments were selected for each intersection and costs of treatments were obtained from local estimates 37 

and available literature. Crash cost benefit and treatment cost were used to estimate benefit-cost ratio by 38 

site. A combination of sites that had the greatest overall cost effective safety benefit on the network were 39 

selected through an incremental optimization process. This paper contributes to exiting literature by 40 

providing guidance for development of jurisdiction specific crash prediction models, integration of 41 

pedestrian and cyclist crashes, application of EPDO and LOSS performance measures, and selection of 42 

sites with promise through an incremental optimization process for a given budget in a small jurisdiction. 43 

 44 
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INTRODUCTION 1 

Roadway safety management is a process that consists of network screening, diagnosis, countermeasures 2 

selection, economic appraisal, prioritization, and safety effectiveness (1). In network screening, a list of 3 

sites with promise for safety treatment are ranked. Diagnosis focuses on engineering studies to select 4 

appropriate countermeasures. Economic appraisals are conducted with cost benefit analysis to identify 5 

potential benefits. Based on the economical appraisal, projects are prioritized for implementation. After 6 

selected treatments are implemented, effectiveness of treatments is evaluated over time (1). Including all 7 

the steps of the roadway safety management cycle, the process was automated with the Safety Analyst 8 

software—developed for state and local agencies (2). Unfortunately, adoption has been slow due to 9 

stringent data requirements, resources, and software yearly licensing cost (3).  10 

Safety initiatives have mainly been implemented at the state level which has indirectly benefited 11 

small jurisdictions (4). However, small jurisdictions have their own needs, management, policy, and 12 

practices. In this paper, the implementation of the roadway intersection safety management process is 13 

illustrated for a small municipality—Madison, Wisconsin. The Madison metropolitan area has a population 14 

of 435,430 over an area of 446.1 square miles (including lakes). The city has a well-established transit 15 

system and over 61-mile network of bike paths and 117-mile bike routes. Madison is one of the only five 16 

cities in the United Sates with platinum-level bicycle friendly community status from the League of 17 

American Bicyclist. Madison intersection safety management consisted of assessing 4,062 intersections 18 

through network screening, diagnosis, selection of countermeasure, economic appraisal, and prioritization.  19 

For network screening, Madison jurisdiction specific crash prediction models were developed by 20 

intersection type. Performance measures included Equivalent Property Damage Only (EPDO) average 21 

crash frequency with Empirical Bayes adjustments and Level of Service of Safety (LOSS) (1). In 22 

collaboration with several local agencies, diverse datasets were integrated including geometric, operational, 23 

crash, and hospital data. For the EPDO method, severity equivalent crash weights were required, so the 24 

Wisconsin Crash Outcome Data Evaluation System (CODES) was used to estimate local crash costs by 25 

severity (KABCO scale) and crash type (motor vehicle, motor vehicle-pedestrian, and motor vehicle-26 

bicycle crashes). Sites were provisionally ranked and an automated diagnosis was conducted based on 27 

intersections observed crash distributions (angle, nighttime, pedestrian crashes, etc.). Twelve proven 28 

intersection countermeasures were identified, and Crash Modification Factor (CMF) were obtained from 29 

the CMF clearinghouse (4). Countermeasures costs were obtained from local estimates and available 30 

literature (6). Through an optimization process, a combination of sites that had the greatest overall safety 31 

benefit on the network were selected following the “most bang for the buck” principle (7).  32 

 In roadway safety management process, network screening gets the most attention as a measure of 33 

the state of safety of the system, and ranking of facilities with descriptions such as “collision-prone”, “high 34 

crash”, “most dangerous”, or “top 30 riskiest” locations are commonly found. Consequently, attention is 35 

emphasized on locations that may require significant investment and time for the implementation of a safety 36 

treatment; or the safety issues may not even be completely addressed because it may not be economically 37 

viable. Focusing on the results of network screening alone is counterproductive since only the sites are 38 

highlighted and not the overall optimal solution for safety improvement in the network. Completing the 39 

safety management process up to the stage of project prioritization provides a more effective message for 40 

safety improvement and resource allocation. This paper provides a clear pathway of the entire safety 41 

management process to effectively use jurisdiction specific data, implement the Highway Safety Manual 42 

(HSM) to its fullest potential, and obtain the greatest overall safety improvement for the system with the 43 

resources available in a small jurisdiction such as Madison metropolitan area in Wisconsin.  44 
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LITERATURE REVIEW 1 

The literature review section focuses on the implementation of the HSM in small jurisdictions including 2 

model development, crash costs, EDPO weights, and intersection countermeasures.  3 

 4 

Model Development 5 

There is evidence that developing jurisdiction specific crash prediction models instead of calibrating 6 

existing models significantly improve the accuracy of estimates (8-13). Young and Park (8) conducted a 7 

study for the City of Reina, Saskatchewan, Canada in which network screening jurisdiction specific models 8 

were developed and compared with calibrated models from the HSM. The database consisted of 387 9 

intersections. The results showed that jurisdiction specific models outperformed calibrated models and 10 

similar effort and resources were required in the process—development of models is feasible and 11 

economically viable for small jurisdictions. Similarly, Persaud et al. (9) found mixed results with the 12 

transferability of models from other jurisdictions to Toronto, Canada. Sacci et al. (10) evaluated 13 

transferability of the HSM prediction models to Italian two-lane undivided rural roads by comparing the 14 

calibrated predictions with local data estimates. The results showed that the models differed significantly 15 

with increasing exposure, and the CMFs revealed some bias to site characteristics. Claros et al. (13) found 16 

that calibration factors for signalized intersections had a disproportional difference between the observed 17 

data in Missouri and the HSM models. Thus, the calibration was deemed inappropriate and the development 18 

of Missouri-specific models was warranted. 19 

 20 

Crash Costs and EPDO Weights 21 

Network screening included the EPDO performance measure which requires crash cost estimates to 22 

determine property damage equivalent weights by crash severity. There are no nationally standardized crash 23 

costs for safety analysis and jurisdictions independently adjust or estimate crash costs. However, there is 24 

guidance and procedures for crash cost estimation (14). Comprehensive crash costs consist of economic 25 

and loss of quality of life costs. Economic costs are measured in terms of goods and services related to 26 

emergency response, property damage, and medical costs. Loss of quality of life costs consist of the 27 

monetized value of pain and suffering due to death or injury. Crash cost estimates may differ based on the 28 

severity levels and definitions considered. Table 1 provides values of crash costs and corresponding EPDO 29 

weights in the HSM and selected studies. The HSM’s recommended crash costs follow the KABCO severity 30 

scale. In contrast, crash costs of combined severities may use fatal and serious injury crashes such as 31 

MORCP (18) in Table 1. Assumed crash costs have a direct effect on the magnitude and distribution of 32 

EPDO weights. Specific EPDO weights for bicycle or pedestrian crashes were not available in the literature. 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 
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                             TABLE 1  Crash Costs and EPDO Weights  1 

Reference Severity Crash Cost1 Weight 

HSM (1) 

Fatal (K) $4,008,900  542 

Disabling injury (A) $216,000  29 

Evident injury (B) $79,000  11 

Possible injury (C) $44,900  6 

Property Damage (O) $7,400  1 

Ma et al. (15) 

Fatal $4,113,956  607 

Injury $144,291  21 

No-injury $6,783  1 

Washington et al. (16) 

Fatal $3,366,388  1,330 

Major injury $2,402,997  949 

Minor injury $27,852  11 

Property damage $2,532  1 

Flores et al. (17) 

Fatal $5,543,800  509 

Injury $134,600  12 

Property Damage $10,900  1 

MORPC (18) 

Fatal and serious injury $315,578  38 

Visible injury $54,470  7 

Possible injury $36,920  4 

Property damage $8,320  1 

Notes: 1 Crash costs may differ according to the reference year. For instance, the 2 
HSM crash costs are in 2001 dollars.  3 

 4 

Intersection Countermeasures  5 

Crash modification factors (CMF) are adjustment factors that account for geometric or operational 6 

variations at a site. CMFs are multiplied by the base Safety Performance Function (SPF). In the case of 7 

countermeasures, CMFs greater than 1.0 indicate an expected increase of crashes and a value less than 1.0 8 

indicates an expected reduction in crashes after the implementation of the treatment. Reliable CMF 9 

estimates provide strong evidence of the effectiveness of treatments. Table 2 provides selected CMFs for 10 

stop controlled, signalized intersections, and corresponding treatment cost estimates.  11 

 12 

TABLE 2  Intersection Countermeasures Crash Modifications Factors and Costs (5, 14) 13 

Intersection Countermeasure CMF1 Cost2 

Safety Target 
Min Max 

Stop  

Controlled 

Systemic signing and marking 0.92 $5,000 $8,000 Overall safety 

LED beacons  0.95 $5,000 $15,000 Speed/running sign crashes  

Transverse rumble strips 0.823 $3,000 $10,000 Speed/running sign crashes  

J-turn 0.65 $75,000 $125,000 Angle crashes, divided road 

Roundabout 0.56 $250,000 $500,000 Site specific  

Install traffic signal 0.76 $200,000 $500,000 Site specific  

Signalized 

Systemic signing and marking 0.96 $5,000 $30,000 Overall safety 

Adaptive signal control 0.83 $10,000 $70,000 Overall operations/safety 

Pedestrian treatments  0.91 $5,000 $15,000 Pedestrian safety 

All  

Lighting  0.843 $10,000 $15,000 Nighttime crashes 

Skid resistance surface 0.833 $20,000 $50,000 Wet, ice, and snow crashes 

Dynamic speed warning 0.95 $10,000 $20,000 Speed related crashes 
Notes: 1 Crash modification factors that apply to all crash types and all severities were considered (5); 2 local estimates 14 
and costs found in the literature (14); 3 CMFs may apply to diverse roadway facility types.  15 

 16 
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Based on the study design and data availability, CMFs are ranked with a five-star level rating in 1 

the CMF Clearinghouse (5). There are instances in which reliable CMFs are not available for specific 2 

treatments or facility types (difficult to capture safety effect, limited data available). Available CMFs may 3 

be used for different applications at discretion.  4 

 5 

METHODOLOGY  6 

The methodology follows established roadway safety management process of the HSM including network 7 

screening, diagnosis, countermeasure selection, economic appraisal, and prioritization. Before initiating 8 

network screening, crash prediction models, crash costs, and EPDO weighs were obtained with local data. 9 

Figure 1 summarizes the safety management process methodology and considerations of this study. Each 10 

section of the safety management process is covered in detail in the following sections.     11 

 12 

Figure 1  Safety management process methodology and considerations 13 

 14 

Jurisdiction Specific Crash Prediction Models 15 

Development of crash prediction models consisted of data collection, modeling, and model diagnostics. 16 

 17 

Data Collection  18 

Data required for modeling included intersection traffic volumes, traffic control, geometry, and crashes. 19 

Traffic data consisted of total entering vehicles (AADTent) to the intersection per day (vpd). Total entering 20 

vehicles were obtained through the summation of entering AADTs from all approach legs to the 21 

intersections. Street segments in a GIS database file had total traffic volume for all directions of travel. The 22 
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volume of all legs in the intersection was totaled and divided in half to get an estimated entering traffic 1 

volume. The dataset included signal, stop, yield, and no control intersections. The main geometric 2 

parameter was the number of legs or approaches to the intersections. Crashes within 250 feet from the 3 

center of the intersection were collected. Crashes were mapped using available lat/long coordinates. Only 4 

6.2% of crash records did not have coordinate information available and were not considered. Crash data 5 

was collected between 2005 and 2016. Data used for modeling was different than the data used for network 6 

screening. Data from 2005-2011 (7 years) was used for model development and 2012-2016 (5 years) was 7 

used for network screening. In the case of roundabouts, a completely separate database with 75 sites across 8 

the state were used (excluding Madison area roundabouts). Since there were not enough roundabouts and 9 

crash data for model development in the Madison area, sites and data collection were expanded at the state 10 

level.    11 

 12 

Model Development  13 

Network screening crash prediction model development consisted of exploratory data analysis, intersection 14 

category designation, and statistical modeling using the Negative Binomial formulation. Crash distribution 15 

factors were obtained by crash type and severity. Crash types considered were motor vehicle, motor vehicle-16 

bicycle, and motor vehicle-pedestrian crashes. Crash severity consisted of conventional KABCO scale. 17 

 18 

Exploratory Data Analysis (EDA) The analysis consisted of evaluating intersection crash 19 

distribution by signal control type over total entering vehicles (AADTent). Figure 2(a) illustrates the EDA 20 

plot for intersections in the Madison area during 2005-2011. The results showed a distinct distribution of 21 

crashes by signal control type in which signalized intersections had a higher number of crashes and traffic 22 

volume compared to the other intersection types, as one might expect. Also, all-way stop controlled 23 

intersections displayed an increasing orderly crash distribution over total entering vehicles. The rest of 24 

intersections had lower crash occurrence and showed similar distribution along total entering traffic (mainly 25 

two-way stop-controlled intersections). Figure 2(b) illustrates crash data distribution for roundabouts over 26 

total entering vehicles (crashes per year since date of implementation varies).  27 

 28 

                                               (a)                                                                              (b) 29 

Figure 2  EDA of crashes versus AADTent for (a) conventional intersections and (b) roundabouts 30 

 31 

 32 
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For model development, four intersection categories were designated: 1) Signal, 2) Stop (All-way), 1 

3) Roundabouts, 4) Stop (Two-way), Stop (Multi), Yield, and No Control. In Table 3, descriptive statistics 2 

for each intersection category are provided. Stop (Multi) refers to stop control intersections that may have 3 

one-way streets or approach legs for exclusive use of cyclist. 4 

 5 

  TABLE 3  Descriptive Statistics by Intersection Category 6 

Cat. Description Sites Variable Minimum1 Maximum Average St. Deviation 

1 Signal 423 

𝐴𝐴𝐷𝑇𝑒𝑛𝑡 (vpd) 4,475 65,825 25,388 13,606 

Number of Legs 1 6 3.70 0.51 

Crashes (in 7 years) 0 257 41.04 38.76 

2 Stop (All Way) 170 

𝐴𝐴𝐷𝑇𝑒𝑛𝑡 (vpd) 440 11,800 4,517 2,759 

Number of Legs 3 5 3.72 0.48 

Crashes (in 7 years) 0 21 3.64 4.45 

3 Roundabout 75 

𝐴𝐴𝐷𝑇𝑒𝑛𝑡 (vpd) 1,830 28,076 12,333 6,382 

Number of Legs 3 4 3.40 0.49 

Crashes / Year 0 8 2.04 1.93 

4 

Stop (Two-way), 

Stop (Multi), Yield, 

No Control 

3,382 

𝐴𝐴𝐷𝑇𝑒𝑛𝑡 (vpd) 35 33,538 6,865 6,102 

Number of Legs 2 5 3.27 0.45 

Crashes (in 7 years) 0 65 4.35 6.88 
  Notes: 1 one leg intersections were considered for one-way roads with mid-block pedestrian crossings and traffic controllers.  7 

 8 

The average AADTent was 50,775 vpd, 9,033 vpd, 12,333 vpd, and 13,730 vpd for intersection 9 

categories 1, 2, 3, and 4 respectively. The number of legs showed that there were some intersections with 10 

only one leg and up to six legs. Intersections with the number of legs less than 2 (176 sites) and more than 11 

4 (110 sites) were individually reviewed and validated. One leg intersections were considered for one-way 12 

roads with mid-block pedestrian crossings and traffic controllers. Intersections with inconsistent number of 13 

legs were corrected and included in the data. The number of crashes provided in Table 3 were for crashes 14 

in a seven-year period. As expected, intersection category 1 (signalized) with 41.04 crashes over seven 15 

years had on average more crashes than the other categories. In the case of roundabouts, the periods of 16 

analysis were different, so crashes per year were provided in Table 3 (average of 2.04 crashes/year). 17 

 18 

Model Parameter Estimation Maximum likelihood was used for model parameter estimation. The 19 

log-likelihood function based on the Negative Binomial is illustrated in Equation 1 (19). Statistical software 20 

was used to optimize the function and obtain model coefficients.  21 

 22 

𝑙𝑛[ℒ(𝑎, 𝑏, … , 𝒷)] = ∑ [𝑙𝑛𝛤(𝑜𝑏𝑠𝑖 + 𝒷) − 𝑙𝑛𝛤(𝒷) + 𝒷 𝑙𝑛(𝒷) + 𝑜𝑏𝑠𝑖 𝑙𝑛(𝑝𝑟𝑒𝑑𝑖) − (𝒷 + 𝑜𝑏𝑠𝑖)𝑙 𝑛(𝒷 + 𝑝𝑟𝑒𝑑𝑖)]𝑛
𝑖=1      (1) 23 

 24 

The letter i denotes units (intersections). The mean incident count for unit i over period of time 𝑦𝑖 25 

is ui. The traits of i define population of units that are assumed to be Gamma distributed with mean E(ui) 26 

and variance E(ui)2/ 𝒷. The value 1/𝒷 is called the overdispersion parameter which is also commonly 27 

denoted by the letter k. The parameter estimates of the model coefficients are 𝑎, 𝑏, … , 𝒷. The log-likelihood 28 

function that maximizes the estimates are those that maximize the sum of 𝑙𝑛[ℒ(𝑎, 𝑏, … , 𝒷)] (19). Crash 29 

prediction models were developed by intersection category provided in Equations 2-7.  30 

 31 

 32 

 33 
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Intersection Category 1: 1 

 2 

𝐴𝐴𝐷𝑇𝑒𝑛𝑡 < 35,000 vpd 3 

 4 

𝑁1 = 0.450 × (
𝐴𝐴𝐷𝑇𝑒𝑛𝑡

10,000
)

1.199

× 𝐿𝑒𝑔𝑠1.059                                      (
𝑐𝑟𝑎𝑠ℎ𝑒𝑠

𝑦𝑒𝑎𝑟
) , 𝑘 = 0.364  (2) 5 

 6 

35,000 vpd ≤  𝐴𝐴𝐷𝑇𝑒𝑛𝑡 < 70,000 vpd 7 

 8 

𝑁1 = 0.143 × [6.746 × (
𝐴𝐴𝐷𝑇𝑒𝑛𝑡

10,000
) − 10.778 ] × 𝐿𝑒𝑔𝑠1.059       (

𝑐𝑟𝑎𝑠ℎ𝑒𝑠

𝑦𝑒𝑎𝑟
) , 𝑘 = 0.364  (3) 9 

 10 

Intersection Category 2: 11 

 12 

𝐴𝐴𝐷𝑇𝑒𝑛𝑡 < 12,500 vpd 13 

 14 

𝑁2 = 0.761 × (
𝐴𝐴𝐷𝑇𝑒𝑛𝑡

10,000
)

1.229

× 𝐿𝑒𝑔𝑠0.416                                     (
𝑐𝑟𝑎𝑠ℎ𝑒𝑠

𝑦𝑒𝑎𝑟
) , 𝑘 = 0.522 (4) 15 

 16 

Intersection Category 3: 17 

 18 

𝐴𝐴𝐷𝑇𝑒𝑛𝑡 < 30,000 vpd 19 

 20 

𝑁3 = [
0.540

1+23.409×exp(−2.901×
𝐴𝐴𝐷𝑇𝑒𝑛𝑡

10,000
)
] × 𝐿𝑒𝑔𝑠1.576                        (

𝑐𝑟𝑎𝑠ℎ𝑒𝑠

𝑦𝑒𝑎𝑟
) , 𝑘 = 0.473  (5) 21 

 22 

Intersection Category 4: 23 

 24 

𝐴𝐴𝐷𝑇𝑒𝑛𝑡 < 7,500 vpd 25 

 26 

𝑁4 = 0.017 × 𝑒𝑥𝑝 (2.136 ×
𝐴𝐴𝐷𝑇𝑒𝑛𝑡

10,000
) × 𝐿𝑒𝑔𝑠1.737                     (

𝑐𝑟𝑎𝑠ℎ𝑒𝑠

𝑦𝑒𝑎𝑟
) , 𝑘 = 0.785 (6) 27 

 28 

7,500 vpd ≤ 𝐴𝐴𝐷𝑇𝑒𝑛𝑡 < 35,000 vpd 29 

 30 

𝑁4 = 0.143 × [0.737 × (
𝐴𝐴𝐷𝑇𝑒𝑛𝑡

10,000
) + 0.063 ] × 𝐿𝑒𝑔𝑠1.737        (

𝑐𝑟𝑎𝑠ℎ𝑒𝑠

𝑦𝑒𝑎𝑟
) , 𝑘 = 0.785 (7) 31 

 32 

Where, 33 

 34 

𝑁𝑛 , crash prediction model for intersection category 𝑛 in crashes per year [𝑛=1, Signal; 𝑛=2, Stop 35 

(All-way); 𝑛=3, Roundabout; 𝑛=4 Stop (Two-way), Stop (Multi), Yield, No Control]; 36 

𝐴𝐴𝐷𝑇𝑒𝑛𝑡 , total entering vehicles in vehicles per day (vpd); 37 

𝐿𝑒𝑔𝑠 , number of approaching legs to intersection; 38 

𝑘 , model Overdispersion parameter. 39 

 40 
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Predictions beyond specified AADTent ranges for each model should be used with caution. Two 1 

models were developed for intersection categories 1 and 4 since crash distribution was different by ranges 2 

of AADTent. 3 

 4 

Distribution Factors Crash type (CDF) and Severity Distribution (SDF) Factors were obtained for 5 

different crash types and corresponding severity levels. Distribution factors are essentially proportions of 6 

each crash type and severity of the overall intersection crashes (1). Table 4 provides a summary of all 7 

distribution factors obtained. 8 

 9 

TABLE 4  Crash Distribution Factors 10 

𝐶𝐷𝐹𝑖 
All Ped Bike Veh 

1.000 0.016 0.023 0.960 

𝑆𝐷𝐹𝑖,𝑗 

K 0.026 0.004 0.001 

A 0.157 0.088 0.013 

B 0.455 0.487 0.080 

C 0.322 0.331 0.178 

O 0.040 0.090 0.727 

 All 1.000 1.000 1.000 

Notes: i = crash type, j = crash severity, Ped = motor vehicle-11 
pedestrian crashes, Bike = motor vehicle-bicycle crashes, Veh = 12 
motor vehicle crashes, KABCO severity scale.  13 

 14 

Model Diagnostics  15 

Three goodness-of-fit measures were used to determine the performance of crash prediction models: Log-16 

likelihood, overdispersion parameter, and Cumulative Residuals (CURE) plots (19). Model parameters that 17 

maximize the Negative Binomial likelihood function (Equation 1) are those that maximize the sum of 18 

𝑙𝑛[ℒ(𝑎, 𝑏, … , 𝒷)] resulting in the Log-likelihood. An increase in Log-likelihood is desired when predictor 19 

variables with specified functional forms are introduced in the model. The overdispersion parameter 20 

indicates the variability of the model in comparison with a Poisson distribution with the same mean. The 21 

reliability of the resulting models is likely to be higher with a smaller value of the overdispersion coefficient 22 

(𝑘 = 1/𝒷). The larger the dispersion term (𝒷), the smaller the overdispersion. In contrast with a single 23 

goodness-of-fit measure that reflects overall model performance for all values of a variable, CURE plots 24 

track model performance throughout the range of values as provided in Figure 3 (by AADTent ranges). 25 

A satisfactory CURE plot is one that follows a symmetric random walk to the horizontal axis. Large 26 

vertical changes represent large residuals (outliers), and long increasing or decreasing runs represent 27 

regions of consistent under- or overestimation (19). As mentioned previously, two prediction models were 28 

developed for categories 1 and 4, so the CURE plots by range of AADTent were combined in Figures 3(a) 29 

and 3(d). Throughout the process of adding variables and trying different functional forms, all measures of 30 

goodness of fit were continuously evaluated for each resulting model. CURE plots showed satisfactory 31 

measures of goodness of fit along AADT ranges for all models developed.  32 

 33 
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                                               (a)                                                                                 (b) 1 

                                               (c)                                                                                 (d) 2 

Figure 3  CURE Plots for model (a) category 1, (b) category 2, (c) category 3 and (d) category 4 3 

 4 

Crash Costs and EPDO Weights 5 

Wisconsin CODES data was used to estimate jurisdiction specific intersection crash costs by crash type and 6 

severity. Crash costs were used to estimate EPDO weights. CODES database provides cost estimates for 7 

medical, societal, and quality of life costs by person injured in a crash. Crash and hospital databases were 8 

linked to categorize injuries by part of the body, fracture involvement, and threat to life. Cost estimates 9 

were also provided for non-hospitalized crash cases using the Bureau of Labor Statistics data. Costs were 10 

adjusted for inflation (standard CPI changes) (14, 21, 22). 11 

Records of persons injured in crashes were used to estimate crash costs by type and severity. Types 12 

of crashes were classified by motor vehicle, motor vehicle-bicycle, and motor vehicle-pedestrian crashes. 13 

Crash severity classification adopted was conventional KABCO scale. Person injured crash costs had to be 14 

translated to costs per crash. Each person injured was linked to the corresponding crash report. Since police 15 

crash reports are designated by the highest injury severity observed from one of the persons injured in the 16 

crash, multiple individuals with different injury severities may be involved in the crash. Crash costs of all 17 

persons injured were included in the calculation of the overall crash costs with the designated maximum 18 

severity.  19 

EPDO weights were obtained as a function of crash types and severities. The base property damage 20 

cost was $24,322, which corresponds to the motor vehicle property damage crash cost. The analysis showed 21 

that 11.4% of people involved in property damage crashes did receive medical attention which was not 22 

expected for crashes designated as property damage only. Table 5 provides a summary of crash costs and 23 

EPDO weights by crash type and severity. Crash costs data at the state level (Wisconsin) for intersection 24 

cases between 2009-2016 were used. A total of 921,782 persons injured in 348,731 crashes at urban 25 

intersections were recorded at the state level. Crash cost were estimated with state level data because there 26 

were not enough data available at the local level, especially for pedestrian/bicycle fatal and injury crashes. 27 
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Reduced number crashes with specific severities have a direct influence in the magnitude and variability of 1 

crash cost, so expanding the crash cost analysis at the state level was required to obtain reliable estimates.    2 

 3 

TABLE 5  Crash Costs and EPDO Weights by Crash Type and Severity 4 

Severity 
Crash Cost EPDO Weight 

Ped Bike Veh Ped Bike Veh 

K Fatal $3,305,922  $3,147,627  $3,782,512  135.9 129.4 155.5 

A Incapacitating $433,383  $362,759  $389,169  17.8 14.9 16.0 

B Non-Incapacitating $113,100  $90,303  $107,674  4.7 3.7 4.4 

C Possible Injury $73,539  $60,060  $56,365  3.0 2.5 2.3 

O Property Damage $35,692  $49,042  $24,322  1.5 2.0 1.0 

Notes: Ped = motor vehicle-pedestrian crashes, Bike = motor vehicle-bicycle crashes, Veh = motor 5 
vehicle crashes, KABCO severity scale. 6 

 7 

Network Screening 8 

Network screening is the examination of the population to select sites that merit attention and further 9 

assessment. The result of the network screening process is a list of sites ranked in order of priority. Safety 10 

network screening was conducted for arterial/collector intersections for Madison metropolitan area in 11 

Wisconsin. A total of 4,062 intersections were evaluated. EPDO with Empirical Bayes adjustments and the 12 

LOSS were used as safety performance measures to identify and rank intersections for potential safety 13 

improvements.  14 

 15 

EPDO with Empirical Bayes Adjustments  16 

The Empirical Bayes (20) is a rigorous statistical method that accounts for regression to the mean and 17 

utilizes model predictions. The method estimates expected crashes (EXP) as a function of weighted average 18 

of observed (OBS) and predicted (PRED) crashes (Equation 8). Predicted crashes are estimated with 19 

prediction models and distribution factors (Equation 9). The weighted value (𝑤) is a function of the 20 

overdispersion (𝑘) and magnitude of predicted crashes (Equation 10) (20). Thus, the variability of the 21 

prediction model serves as a parameter to adjust the quality of estimates in relation to the amount of 22 

observed data. Expected crashes were estimated by crash type and severity. Since roundabouts were 23 

implemented in different years, predictions were adjusted to reflect a 5-year period comparable with other 24 

intersection types in the study.  25 

  26 

𝐸𝑋𝑃𝑛,𝑖,𝑗 = 𝑤𝑛,𝑖,𝑗 × 𝑃𝑅𝐸𝐷𝑛,𝑖,𝑗 + (1 − 𝑤𝑛,𝑖,𝑗) × 𝑂𝐵𝑆𝑛,𝑖,𝑗   (8) 27 

 28 

𝑃𝑅𝐸𝐷𝑛,𝑖,𝑗 = 𝐶𝐷𝐹𝑖 × 𝑆𝐷𝐹𝑖,𝑗 × 𝑁𝑛 (9) 29 

 30 

𝑤𝑛,𝑖,𝑗 =
1

1+𝑘𝑛×𝑃𝑅𝐸𝐷𝑛,𝑖,𝑗
 (10) 31 

 32 

Where,  33 

 34 

𝐸𝑋𝑃𝑛,𝑖,𝑗 , expected crashes for intersection category 𝑛 [𝑛=1, Signal; 𝑛=2, Stop (All-way); 𝑛=3, 35 

Roundabout; 𝑛=4 Stop (Two-way), Stop (Multi), Yield, No Control], crash type i (Ped = motor 36 

vehicle-pedestrian crashes, Bike = motor vehicle-bicycle crashes, Veh = motor vehicle crashes), 37 

and crash severity j (KABCO scale); 38 

𝑃𝑅𝐸𝐷𝑛,𝑖,𝑗 , predicted crashes for intersection category 𝑛, crash type i, and crash severity j; 39 



Claros, Chitturi, Bill, and Noyce 

11 

 

𝑂𝐵𝑆𝑛,𝑖,𝑗 , observed crashes for intersection category 𝑛, crash type i, and crash severity j; 1 

𝑤𝑛,𝑖,𝑗 , weight for intersection category 𝑛, crash type i, and crash severity j; 2 

𝑘𝑛 , model Overdispersion parameter intersection category 𝑛; 3 

𝐶𝐷𝐹𝑖 , Crash Type Distribution Factor by crash type i; 4 

𝑆𝐷𝐹𝑖,𝑗 , Severity Distribution Factor by severity j; 5 

𝑁𝑛 , crash prediction model for intersection category 𝑛. 6 

  7 

Overall EPDO of intersections was calculated as the sum of the product of expected crashes and 8 

corresponding EPDO weight by crash type and severity (weights provided in Table 5). Equation 11 provides 9 

the intersections overall EPDO (1). Intersections were ranked according to the magnitude of the EPDO. 10 

Although the EPDO ranking may suggest locations with high crash occurrence, practitioners should not 11 

consider that all intersections are equal. Intersections in a network have distinct differences of geometry, 12 

traffic volume, traffic control, and surrounding environment. Hauer (7) argued that a good network 13 

screening is the one that ranks highly those sites at which the most cost-effective treatment can later be 14 

implemented. EPDO ranking is not a definite ranking to select sites with promise for safety improvement, 15 

it is a step in the roadway safety management process to select sites and identify corresponding treatments 16 

that would provide the most safety benefit in the overall system with the resources available. 17 

 18 

𝐸𝑃𝐷𝑂 = ∑ 𝐸𝑋𝑃𝑛,𝑖,𝑗 × 𝐸𝑃𝐷𝑂𝑤𝑒𝑖𝑔ℎ𝑡,𝑖,𝑗𝑛,𝑖,𝑗  (11) 19 

 20 

Where, 21 

 22 

𝐸𝑃𝐷𝑂 , overall intersection EPDO estimate; 23 

𝐸𝑋𝑃𝑛,𝑖,𝑗 , expected crashes for intersection category 𝑛 [𝑛=1, Signal; 𝑛=2, Stop (All-way); 𝑛=3, 24 

Roundabout; 𝑛=4 Stop (Two-way), Stop (Multi), Yield, No Control], crash type i (Ped = 25 

motor vehicle-pedestrian crashes, Bike = motor vehicle-bicycle crashes, Veh = motor 26 

vehicle crashes), and crash severity j (KABCO scale); 27 

𝐸𝑃𝐷𝑂𝑤𝑒𝑖𝑔ℎ𝑡,𝑖,𝑗  , EPDO weight by crash type i and severity j. 28 

 29 

Level of Service of Safety (LOSS) 30 

Crash prediction model estimates were compared to observed crashes and the degree of deviation from the 31 

model prediction was quantified and categorized in four LOSS classes (1). The variability of the model 32 

prediction was calculated in Equation 12 with the overdispersion parameter and predicted crashes:  33 

 34 

𝜎𝑛,𝐴𝑙𝑙,𝐴𝑙𝑙 = √𝑘𝑛 × 𝑃𝑅𝐸𝐷𝑛,𝐴𝑙𝑙,𝐴𝑙𝑙
2 (12) 35 

 36 

The following limits apply to the LOSS evaluated with the prediction standard error, observed, and 37 

predicted crashes (1): 38 

 39 

LOSS I:  Low potential for crash reduction    𝜎 <  𝑂𝐵𝑆𝑛,𝐴𝑙𝑙,𝐴𝑙𝑙 <  𝑃𝑅𝐸𝐷𝑛,𝐴𝑙𝑙,𝐴𝑙𝑙 − 1.5𝜎 40 

LOSS II:  Low to moderate potential for crash reduction 𝑃𝑅𝐸𝐷𝑛,𝐴𝑙𝑙,𝐴𝑙𝑙 − 1.5𝜎 ≤  𝑂𝐵𝑆𝑛,𝐴𝑙𝑙,𝐴𝑙𝑙 <  𝑃𝑅𝐸𝐷𝑛,𝐴𝑙𝑙,𝐴𝑙𝑙  41 

LOSS III: Moderate to high potential for crash reduction 𝑃𝑅𝐸𝐷𝑛,𝐴𝑙𝑙,𝐴𝑙𝑙 ≤  𝑂𝐵𝑆𝑛,𝐴𝑙𝑙,𝐴𝑙𝑙 <  𝑃𝑅𝐸𝐷𝑛,𝐴𝑙𝑙,𝐴𝑙𝑙 + 1.5𝜎 42 

LOSS IV: High potential for crash reduction                                                       𝑂𝐵𝑆𝑛,𝐴𝑙𝑙,𝐴𝑙𝑙 ≥  𝑃𝑅𝐸𝐷𝑛,𝐴𝑙𝑙,𝐴𝑙𝑙 + 1.5𝜎 43 
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Diagnosis 1 

The diagnosis process serves to identify contributing factors and potential safety concerns. The HSM 2 

recommends a three-step process: 1) safety data review, 2) assess supporting documentation, and 3) assess 3 

field conditions (1). Diagnosis requires review of crash types, severities, environmental conditions, past 4 

studies and plans in the vicinity, and site visit. However, in a network screening process, thousands of 5 

intersections are considered and it is not reasonable to believe that a systematic and rigorous diagnosis is 6 

feasible in a timely manner even for a subset of intersections. Thus, for this study, the diagnosis was limited 7 

to the safety data review of the three-step recommended process.  8 

 9 

Safety Data Review 10 

Review of the observed safety data was automated to identify crash types that are predominant at each 11 

intersection. The process consisted of calculating the proportion of left turn, right angle, running signal, 12 

failed to yield, speed, bike, pedestrian, weather (wet, ice, snow), and nighttime related crashes from the 13 

overall observed crashes. Crash types were divided in such categories to match the specific applications of 14 

the countermeasures for intersections mentioned in Table 2. Proportion of crash types were then used to 15 

selected potential countermeasures.  16 

 17 

Selection of Countermeasure 18 

A countermeasure is a roadway strategy aimed at decreasing frequency and/or severity of crashes at a site 19 

(1). As part of the countermeasure selection process, contributing factors should be identified. Unless, a 20 

detailed examination of highly ranked sites in the network screening process is conducted, there is not a 21 

practical way to identify contributing factors at each intersection considered. Thus, anticipation of future 22 

safety benefits due to unspecified treatments must be based on assumptions (7). In this study, based on the 23 

results of the diagnosis step, potential countermeasures were identified based on the magnitude of the 24 

proportion of crash types related to the CMF crash target. In many cases, there were intersections with more 25 

than one potential countermeasure, so treatments were ranked for each intersection considering the CMF 26 

magnitude and cost of implementation (most potential for crash reduction at lowest cost). As a result, the 27 

highest ranked countermeasure for each intersection was identified.  28 

 29 

Economic Appraisal  30 

Safety economic appraisals are performed to quantify the benefits of potential countermeasures in relation 31 

to the treatment cost. The economical appraisal was conducted after network screening, diagnosis, and 32 

countermeasure selection was completed. To quantify the expected benefit of the countermeasure after 33 

implementation, before crash cost estimates were required. Estimates for the before period were already 34 

available from the network screening process, so expected crashes and crash cost estimates in the after 35 

period were calculated. Assuming that the only change in the intersection conditions was the 36 

countermeasure implementation, predicted crashes (Equation 9) were multiplied by the selected 37 

countermeasure CMF (Table 2) to obtain predicted crashes in the after period (Equation 13). In Equation 38 

14, the expected crashes in the before period were adjusted to reflect the effect of the countermeasure in 39 

the after period. The expected crashes in the after period were then used with the EPDO weight to obtained 40 

the overall intersection EPDO for the after period, illustrated in Equation 15. The crash cost benefit was 41 

estimated by subtracting the EPDO for the before and after period and multiplied by the base property 42 

damage cost of $24,322 (severity O, motor vehicle crash) (Table 5). In Equation 17, the benefit-cost ratio 43 

was obtained with the crash cost benefit and treatment cost.  44 
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𝑃𝑅𝐸𝐷𝑛,𝑖,𝑗,𝑎𝑓𝑡𝑒𝑟 = 𝑃𝑅𝐸𝐷𝑛,𝑖,𝑗 × 𝐶𝑀𝐹𝑧 (13) 1 

 2 

𝐸𝑋𝑃𝑛,𝑖,𝑗,𝑎𝑓𝑡𝑒𝑟 = 𝐸𝑋𝑃𝑛,𝑖,𝑗,𝑏𝑒𝑓𝑜𝑟𝑒 ×
𝑃𝑅𝐸𝐷𝑛,𝑖,𝑗,𝑎𝑓𝑡𝑒𝑟

𝑃𝑅𝐸𝐷𝑛,𝑖,𝑗,𝑏𝑒𝑓𝑜𝑟𝑒
 (14) 3 

 4 

𝐸𝑃𝐷𝑂𝑎𝑓𝑡𝑒𝑟 = ∑ 𝐸𝑋𝑃𝑛,𝑖,𝑗,𝑎𝑓𝑡𝑒𝑟 × 𝐸𝑃𝐷𝑂𝑤𝑒𝑖𝑔ℎ𝑡,𝑖,𝑗𝑛,𝑖,𝑗  (15) 5 

 6 

𝐶𝑟𝑎𝑠ℎ 𝐶𝑜𝑠𝑡 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 = (𝐸𝑃𝐷𝑂𝑏𝑒𝑓𝑜𝑟𝑒 − 𝐸𝑃𝐷𝑂𝑎𝑓𝑡𝑒𝑟) × $24,322 (16) 7 

 8 

𝐵
𝐶⁄ =

𝐶𝑟𝑎𝑠ℎ 𝐶𝑜𝑠𝑡 𝐵𝑒𝑛𝑒𝑓𝑖𝑡

𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑢𝑟𝑒 𝐶𝑜𝑠𝑡
 (17) 9 

 10 

Where, 11 

 12 

𝑃𝑅𝐸𝐷𝑛,𝑖,𝑗,𝑘 , predicted crashes for intersection category 𝑛, crash type i, crash severity j, k period; 13 

𝐶𝑀𝐹𝑧 , Crash Modification Factor for treatment z,  14 

𝐸𝑋𝑃𝑛,𝑖,𝑗,𝑘 , expected crashes for intersection category 𝑛 [𝑛=1, Signal; 𝑛=2, Stop (All-way); 𝑛=3, 15 

Roundabout; 𝑛=4 Stop (Two-way), Stop (Multi), Yield, No Control], crash type i (Ped = 16 

motor vehicle-pedestrian crashes, Bike = motor vehicle-bicycle crashes, Veh = motor vehicle 17 

crashes), crash severity j (KABCO scale), and k period; 18 

𝐸𝑃𝐷𝑂𝑘  , overall intersection EPDO estimate for k period; 19 

𝐸𝑃𝐷𝑂𝑤𝑒𝑖𝑔ℎ𝑡,𝑖,𝑗  , EPDO weight by crash type i and severity j; 20 

𝐵
𝐶⁄  , benefit-cost ratio. 21 

   22 

Project Prioritization and Optimization 23 

The method selected for project prioritization was the incremental benefit-cost optimized for a given budget 24 

(1). The method consisted of ranking sites based on the magnitude of the B/C ratio. For a given budget, 25 

sites that maximized the overall B/C were selected. As expected, sites treated with low and medium cost 26 

treatments ($5,000-$70,000) would yield the best outcome—maximum overall safety effect to the system. 27 

Alternatively, with a separate budget, jurisdictions may decide to conduct an independent prioritization and 28 

optimization process for sites with high cost treatments which may include implementation of j-turns, 29 

roundabouts, or signalized intersections ($75,000-$500,000). 30 

 31 

RESULTS 32 

Results are presented for optimal site selection with treatments that provide the overall maximum safety 33 

benefit in the network of intersections in the Madison metropolitan area in Wisconsin.  A summary of the 34 

results is presented in Table 6. A hypothetical budget of $3,000,000 was assumed. Since low and medium 35 

cost treatments would provide the maximum overall benefit, selection of higher cost treatments may also 36 

be specified with the budget distributed in two groups—low/medium and high cost treatments. The 37 

optimization proposed allocates resources based on two subset budgets according to the cost of the 38 

treatments; however, other conditions may be specified by number of locations, intersection type, or crash 39 

types. Ranking from network screening (Rankne) was used provisionally to identify potential 40 

countermeasures in the diagnosis and countermeasure selection steps. As a result of the economical 41 

appraisal, a second ranking (Rankea) was developed based on the magnitude of the B/C ratio. Based on the 42 

economical appraisal ranking, sites were sorted from the highest to lowest B/C for the optimization process. 43 
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 TABLE 6  Summary of Results 1 

Budget1 $3,000,000    

Proposed 

Distribution1 

Low/Medium 33.00% $990,000 
Crash Cost Benefit 

Low/Medium $17,905,385   

High 67.00% $2,010,000 High $4,709,099   

Adjusted 

Distribution2 

Low/Medium 36.67% $1,100,000 Overall Crash Cost Benefit $22,614,485   

High 63.33% $1,900,000 Benefit-Cost  

Ratio (B/C) 

Low/Medium 16.3   

Actual  

Distribution3 

Low/Medium 36.63% $1,099,000 High 2.5   

High 63.33% $1,900,000 Overall Benefit-Cost Ratio (B/C) 7.5   

Budget - Treatment 

Cost 

Low/Medium 0.03% $1,000 Intersection 

Treatments 

Low/Medium 59   

High 0.00% $0 High 9   

Intersection  Network Screening Diagnosis/Countermeasure Economic Appraisal Prioritization/Optimization 
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1 4 58,038 94 III $2,284,555 86 1 Low $6,500 86 $2,101,791 $182,764 28.1 1 Yes $6,500 $0 

2 4 65,125 92 III $2,236,743 93 1 Low $6,500 85 $2,057,804 $178,939 27.5 2 Yes $13,000 $0 

3 4 58,150 87 III $2,122,922 101 1 Low $6,500 80 $1,953,088 $169,834 26.1 3 Yes $19,500 $0 

4 1 65,650 250 III $6,084,027 6 8 Medium $40,000 208 $5,049,742 $1,034,285 25.9 4 Yes $59,500 $0 

       :                            :                     :                     : 

57 1 40,800 175 IV $4,245,583 23 7 Medium $17,500 167 $4,054,532 $191,051 10.9 57 Yes $1,075,000 $0 

58 1 48,825 174 III $4,240,441 24 7 Medium $17,500 166 $4,049,621 $190,820 10.9 58 Yes $1,092,500 $0 

59 1 63,550 171 II $4,170,460 25 7 Medium $17,500 164 $3,982,790 $187,671 10.7 59 No $0 $0 

60 1 51,300 171 III $4,154,957 26 7 Medium $17,500 163 $3,967,984 $186,973 10.7 60 No $0 $0 

61 1 33,200 103 III $2,500,127 71 8 Medium $40,000 85 $2,075,105 $425,022 10.6 61 No $0 $0 

62 4 31,558 35 III $860,288 344 1 Low $6,500 33 $791,465 $68,823 10.6 62 Yes $1,099,000 $0 

63 1 42,950 169 III $4,113,725 27 7 Medium $17,500 162 $3,928,608 $185,118 10.6 63 No $0 $0 

       :                            :                     :                     : 

117 4 16,625 27 III $662,069 452 1 Low $6,500 25 $609,103 $52,965 8.1 117 No $0 $0 

118 4 22,285 96 IV $2,340,897 82 4 High $100,000 63 $1,526,265 $814,632 8.1 118 Yes $0 $100,000 

119 1 20,575 79 IV $1,913,931 115 8 Medium $40,000 65 $1,588,562 $325,368 8.1 119 No $0 $0 

       :                            :                     :                     : 

1329 4 948 2 III $39,560 3,568 3 Low $6,500 1 $32,439 $7,121 1.1 1,329 No $0 $0 

1330 4 26,975 66 IV $1,594,851 153 6 High $350,000 50 $1,212,087 $382,764 1.1 1,330 Yes $0 $1,900,000 
 Notes: 1 Hypothetical budget and proposed distribution were data entries; 2 redistribution of resources from high to low-median cost treatments to optimize use of resources; 3 final 2 
distribution of resources based on optimization; 4 ranking based on network screening; 5 ranking based on economical appraisal; 6 sites with highest potential for treatment.  3 
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  Using conditional functions, sites with the highest B/C ratio that maximized the use of budget 1 

allocated for the treatment cost group were selected as illustrated in Table 6. For instance, in column 2 

“Incremental Treatment Cost (Low-Medium)”, sites 59-61 were not selected since the cost of treatment at 3 

any of those sites would go over the allotted budget; those sites were skipped until site 62 with a treatment 4 

cost that complied with the remaining budget (maximizing the use of resources). The same process was 5 

conducted for high cost treatments. As anticipated, the B/C ratio of low and medium cost treatments was 6 

significantly higher than high cost treatments (16.3 compared to 2.5). With low and medium cost treatments, 7 

59 intersections were selected for systemic signing and marking improvements, adaptive signal control for 8 

signalized intersections, transverse rumble strips, and pedestrian improvement treatments. Intersections 9 

selected with high cost treatments were 9 overall—J-turns, roundabouts, or signalized intersections.  10 

Safety management process should be completed up to the project prioritization process. Usually, 11 

network screening results are released before further analysis is conducted. For instance, in Figure 4(a), 12 

using the EPDO results from network screening, the top 100 sites were selected as sites with promise. 13 

However, the approach is biased towards intersections with high number of crashes and AADT. 14 

Additionally, evaluating the EPDO by intersection type in Figure 4(b) clearly illustrates that most of those 15 

top 100 sites were signalized intersections, not including other intersections types. Using the LOSS measure 16 

in Figure 4(c), we can visualize that the distribution of sites with lower LOSS included a wide array of 17 

signal types and AADT ranges. Thus, through the optimization process, we can observe in Figure 4(d) that 18 

sites that maximized the overall safety benefit of the network were sites from varied LOSS, AADT ranges, 19 

and intersections types.                              20 

 21 

 22 

                                             (a)                                                                               (b) 23 

                                                                 24 
                   (c)                                                                              (d) 25 

Figure 4  EPDO/AADTent (a) top 100, (b) by intersection type, (c) by LOSS, and (d) with optimization 26 
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CONCLUSIONS 1 

Safety initiatives have mainly been implemented at the state level (4). However, application of the safety 2 

management process is limited in small municipalities due to data, statistical expertise, and resources 3 

required. In this paper, the implementation of intersection safety management process for a smaller 4 

transportation agency is illustrated.  5 

Since the first step of the safety management process is network screening, ranking of facilities 6 

have a negative connotation and disseminate inconclusive information of the process. Attention is drawn to 7 

locations that may require significant investment and time for the implementation of a safety treatment; or 8 

the safety issues at the location may not even be completely addressed because it may not be economically 9 

viable. Focusing and disseminating results of network screening alone is counterproductive and should be 10 

used provisionally until project prioritization, in the safety management process, is completed. Through an 11 

optimization process, a combination of sites that have the greatest overall safety benefit to the network 12 

should be selected following the “most bang for the buck” principle (7).  13 

This paper provides a clear implementation of the entire safety management process to effectively 14 

use jurisdiction specific data for model development, integrate pedestrian and cyclist crashes, application 15 

of EPDO and LOSS performance measures, and selection of sites with promise through an incremental 16 

optimization process to obtain the greatest overall safety improvement for the network with the resources 17 

available in a small jurisdiction. 18 

 19 

ACKNOWLEDGMENTS 20 

The authors are thankful for the assistance provided by Colleen Hoesly, Daniel Seidensticker from the 21 

Madison Area Transportation Planning Board. The authors also want to acknowledge the assistance 22 

provided by Wayne Bigelow from the Center for Health Systems Research and Analysis (CHSRA).  23 

 24 

AUTHOR CONTRIBUTIONS 25 

The authors confirm contribution to the paper as follows: study conception and design: Boris Claros, 26 

Madhav Chitturi, Andrea Bill, and David A. Noyce; analysis and interpretation of results: Boris Claros, 27 

Madhav Chitturi, and Andrea Bill; draft manuscript preparation: Boris Claros and Madhav Chitturi. All 28 

authors reviewed the results and approved the final version of the manuscript. 29 

 30 

REFERENCES 31 

1. American Association of State Highway Transportation Officials. Highway Safety Manual (HSM) with 32 

Supplement, 1st ed. Washington, DC: AASHTO, 2014. 33 

2. American Association of State Highway and Transportation Officials. AASHTOWare Safety AnalystTM. 34 

Washington, DC: AASHTO. http://www.safetyanalyst.org/. Accessed July 9, 2019. 35 

3. Lim, I. K. and Y. J. Kweon. Identifying High-Crash-Risk Intersections: Comparison of Traditional 36 

Methods with the Empirical Bayes–Safety Performance Function Method. Transportation Research 37 

Record: Journal of the Transportation Research Board, 2013, 2364:44-50. 38 

4. Federal Highway Administration. Highway Safety Improvement Program (HSIP). U.S. Department of 39 

Transportation. https://safety.fhwa.dot.gov/hsip/. Accessed July 8, 2019.  40 

5. Federal Highway Administration. Crash Modification Factors Clearinghouse. U.S. Department of 41 

Transportation.  http://www.cmfclearinghouse.org/index.cfm. Accessed July 9, 2019. 42 

6. Rice, E. Low-Cost Safety Enhancements for Stop-Controlled and Signalized Intersections. Publication 43 

No. FHWA-SA-09-020. FHWA, U.S. Department of Transportation, 2009. 44 

http://www.safetyanalyst.org/
https://safety.fhwa.dot.gov/hsip/
http://www.cmfclearinghouse.org/index.cfm


Claros, Chitturi, Bill, and Noyce 

17 

 

7. Hauer, E., J. Kononov, B. Allery, and M. S. Griffith. Screening the Road Network for Sites with 1 

Promise. Transportation Research Record: Journal of the Transportation Research Board, 2002, 1784: 2 

27-32. 3 

8. Young, J., and P. Y. Park. Benefits of Small Municipalities Using Jurisdiction-Specific Safety 4 

Performance Functions Rather than the Highway Safety Manual's Calibrated or Uncalibrated Safety 5 

Performance Functions. Canadian Journal of Civil Engineering, 2013. 40: 517-527. 6 

9. Persaud, B., D. Lord, and J. Palmisano. Calibration and Transferability of Accident Prediction Models 7 

for Urban Intersections. Transportation Research Record: Journal of the Transportation Research 8 

Board, 2002. 1784: 57–64. 9 

10. Sacchi, E., B. Persaud, and M. Bassani. Assessing International Transferability of Highway Safety 10 

Manual Crash Prediction Algorithm and its Components. Transportation Research Record: Journal of 11 

the Transportation Research Board, 2012. 2279: 90–98. 12 

11. Srinivasan, R., D. Carter, and K. Bauer. Safety Performance Function Decision Guide: SPF Calibration 13 

vs SPF Development. Publication No. FHWA-SA-14-004. FHWA. U.S. Department of Transportation, 14 

2013. 15 

12. Lu, J., K. Haleem, P. Alluri, A. Gan, and K. Liu. Developing Local Safety Performance Functions 16 

Versus Calculating Calibration Factors for SafetyAnalyst Applications: A Florida Case Study. Safety 17 

Science, 2014, 65:93–105. 18 

13. Claros, B., C. Sun, and P. Edara. Missouri-Specific Crash Prediction Model for Signalized 19 

Intersections. Transportation Research Record: Journal of the Transportation Research Board, 2018, 20 

2672: 32-42. 21 

14. Harmon, T., G. Bahar, and F. Gross. Crash Cost for Highway Safety Analysis. Publication No. FHWA-22 

SA-17-071. U.S. Department of Transportation, 2018. 23 

15. Ma, L., X. Yan, C. Wei, and J. Wang. Modeling the Equivalent Property Damage Only Crash Rate for 24 

Road Segments Using the Hurdle Regression Framework. Analytic Methods in Accident Research, 25 

2016, 11: 48-61. 26 

16. Washington, S., M. Haque, J. Oh, and D. Lee. Applying Quantile Regression for Modeling Equivalent 27 

Property Damage Only Crashes to Identify Accident Blackspots. Accident Analysis and Prevention, 28 

2014, 66:136-146. 29 

17. Flores, M., P. Y. Park, A. Gardiner, and J. Nyen. A High-Level Traffic Safety Policy Document for a 30 

Small Municipality: City of Saskatoon Case Study. Case Studies on Transport Policy, 2015, 3:372-31 

381. 32 

18. Mid-Ohio Regional Planning Commission. MORPC’s Top 100 Regional High-Crash Location 33 

Methodology. MORPC, 2017. http://www.morpc.org/wordpress/wp-34 

content/uploads/2018/08/HCL_Methodology_18.pdf. 35 

19. Hauer, E. The Art of Regression Modeling in Road Safety. New York: Springer, 2015. 36 

20. Hauer, E. Observational Before-After Studies in Road Safety: Estimating the Effects of Highway and 37 

Traffic Engineering Measures on Road Safety. New York: Pergamon, 1997. 38 

21. Blincoe, L., A. Seay, E. Zaloshnja, T. Miller, E. Romano, S. Luchter, and R. Spicer. The Economic 39 

Impact of Motor Vehicle Crashes, 2000. Publication No. DOT-HS-809-446DOT. United States. 40 

National Highway Traffic Safety Administration, 2002. 41 

22. Zaloshnja, E., T. Miller, E. Romano, and R. Spicer. Crash Costs by Body Part Injured, Fracture 42 

Involvement, and Threat-to-life Severity, United States, 2000. Accident Analysis and Prevention, 2004, 43 

36(3):415-427. 44 

http://www.morpc.org/wordpress/wp-content/uploads/2018/08/HCL_Methodology_18.pdf
http://www.morpc.org/wordpress/wp-content/uploads/2018/08/HCL_Methodology_18.pdf

